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TECHNICAL MEMORANDUM X-64671

PROBABILITY OF SATELLITECOLLISION

SUMMARY

A technique for computing the probability that a collisionwill occur

between a given satellite(target satellite)and any one of the totalpopulation

of debris satellitesis presented. This method is restricted to near-circular

target satelliteorbits. The following assumptions were made:

1. The satellite sample consists only of objects trackable by North

American Air Defense Command (NORAD).

2. The satellite population remains static as of a certain epoch.

3. Effects of aerodynamic drag, solar wind, and deliberate propulsive

maneuvers are neglected.

4. The target satellite and debris satellite ascending nodes are random
over 360 deg.

5. The arguments of perigee of the debris satellites are random over

360 deg.

6. The position of lapping between the target satellite and each debris

satellite is random over 360 deg.

7. The radius of apogee, radius of perigee, and inclination of each

debris satellite and the target satellite remain constant.

In order to make the probability calculations, each debris satellite was analyzed

separately, and the total probability of collision was determined from the

individual probabilities of each debris satellite.

A realisticsample problem (the proposed modular Space Station) is

presented to provide further insightinto the collision problem. A satellite

sample of September 1970 containing 1805 objects was used. For a Space

Station mission of 10 yr and an inclinationof 55 deg, the collisionprobability

varied from approximately 0.01 to 0.04 over the altituderange being considered

for the Space Station.

The results of a parameter study to determine what types of debris

orbits (size and shape) contribute a large part to the total collision probability

are given. Near-circular orbits which cross the target vehicle altitude con-

tribute the most to the total collision probability.



INTRODUCTION

Man' s understanding el' his environment has advanced significantly

with the advent of artif,cial earth satellites as I'emote sensing devices. When

these instruments are launched into earth orbit, there is usually some debris

(payload shrouds, explosive bolt fragments, spent stages, etc.) which

accompanies them. The rate at which these objects (payloads and debris)

have been placed into earth orbit has exceeded the rate at which they have

falIen back to earth (due to orbital decay), affecting a continuaI growth in the

total number of artificial earth satellites. NORAD has identified 2588 objects

in earth orbit as of October :/1, 1971 I 1 I • If the present trend continues,

this number will contimle to grow.

In view of this large and increasing satellite density in earth orbital

space, the question arises as to the probability of a collision between two of

the satellites. This question hm_ particular sigl_ifieanee for manned missions

since crew safety is always a high priority item. The protection of expensive,

unmanned satellites (communications, nmterological, etc. ) against collision

with other objects would also be desirable. Decisions with regard to "safe"

altitudes or necessity of collision avoidance systems might be intimately

dependent on a realistic assesst_-ent of the collision lmzard.

This report presents a method of determining the probability that a

given satellite (target satellite) will collide with any other satellite (debris

satellite) :in earth orbit. The computational technique is described in general

terms in the text, and a realistic sample problem (the proposed modular

Space Station) is analyzed to provide further insight :into the collision problem.

The equations are derived in the seven appendices.

PROBLEM DESCRIPTION

The method of computing collision probability for a single debris

satellite with a target satellite is first shown, and is titan extended to include

the entire debris satellite, population.

Figure 1 shows an impending collision between the target satellite and

a debris satellite. Clearly, a collision possibility exists only in the vicinity

where the paths of the two bodies intersect (within A,I,/2 as shown). This
implies that both bodies must be close to the line of intersection between the



orbit planes and that their altitudes be nearly the same. Further, both
bodies must be there at nearly the same time. A collision is possible only
at such times that onebody is in the process of lapping the other body (lapping
is the acquisition of a zero phaseanglebetween the objects

Line of
Intersection

Target
Satellite

Debr

Range
Which

s Path

Target Path

of Target
Collision

Positions for

Is Possible

Debris Satellite

Figure 1. Orbital geometry for a collision

situation between two orbiting objects.



In this study, the target satellite is simulated as a sphere of radius R.
The dimensions of the debris satellite are neglected explicitly, but canbe
accounted for in an actual caseby increasing the radius of the target sphere
by an appropriate amount. If the debris satellite touches or intrudes into the
sphere representing the target satellite, then a collision is defined. The
immediate problem, then, is to determine the probability that this will occur.

MATHEMAT ICAL FORMULAT ION

For this problem, it is convenient to define a coordinate system at

the center of the target satellite as shown in Figure 2. This coordinate

system will be referred to as the "relative" coordinate system. The y axis

of this system remains in the direction of the position vector Rt' and the

× 7¢ . Thex axis isz axis is in the direction of the momentum vector Rt t

a curvilinear axis which is tangent to the orbit path and remains parallel to

the local horizontal. Defining the relative coordinate system in this way

restricts this study to circular orbits for the target vehicle.

Earth Center

Rt
V t

Target Satellite Path
I

Target Satellite

Y

Figure 2. Relative coordinate system.

For specified orbits and a given mutual orbit plane orientation (specific

values of inclinations, arguments of perigee, and ascending node separation),

the velocity of the debris satellite as it passes through the orbit plane of the

sphere can be determined in the relative coordinate system (Appendix A).

If the path of the debris satellite is approximated as a straight line in the

vicinity where collision is possible, then the direction of this relative velocity

4



vector )'cl,c_.<cl_is the di_'cction of tile trajectory of 'cir..:' debrb-: cbh_ct. When

this trajc(qo_':/ t)a,-;_;c_ thcough tile target sphere) a. collision ,)cct, ts.

Thf" dc!)ris satellite has an opportm_ity to p._.,'._,. th L"'U"i._,_,_ lh_' .-qmc!'e' ,.ml.v

when lat)Ffiu_ bot_ecn lhc two objects is occurring. This i_ ha((, ('l(_:tvcr by

examiniD:z Fig. 3 which shows tm ineriial view of ihc path:_ of lhc debvi:_ and

l',tr!;cl _alo!li!,..:-;. A,-;stinlc that the t'tl'KcI sai_qli!e i:-; i)_ l_(>;ili(m 1 x;,]lci_ the,

ct(d)rL_ >_;_tcllilc t)ass(;s through Lhe tttl'gct ();'t)ii; l)l:,m_. 11 (hi, l,t.r;_:(! _I lh(:

target s:d,cl!i.tc i_ les_ than the period of the dt?bri:; _mtetlii,', !!",_._ tht ......_:_w-:t

satellih' will have Iraver_;t_'d a complete orbit plu_: some _ii_i:ti_(:(, 5,q (positior_

2) al lh(_ ti_n(_ It!,' _]cl)rib satellite passes through the tkcg_:_ !>1;_!_,.' ;lo.;_.i.,;.

Th(,rcl:ol'c, wit]-t q._al.(,}_, :;ucee,_sive orbit of the del)l:ts satcllit,.', II_c tcci'_et

sato!l ilc :q)_;v<);)c]_(::; A_-; ch)scr to the position il_ its; orbit :_1 u. hi.,_h -L __'_)lli_;ion

c:m o(:c_t:, i }_i,a :-<_.n_.,_i(lc:) i<_ illustrated io Fi_,,. I wilt) re._[>_'{'i _<.,ih,., rcltttive

C()()_v_lin:_ttv: >_3:-;!"_r:, "it i_s [[gurc shows th(,. <.l(_})t-is s:ii(qlil_, i>',!s:;-.;_,{_; Llic(mgh (he

target ()t'l.,.il _: ").>, :tt ',m altitu(le diKerence ot y . \,Viih c;'_-.:b :,cbiial po'):iod..
' " (.1

tt_c del)ris >;:_5.,.q!ite passe:-; through the t:.,._,'a<'t, pl[L)_tC A_S ,'_qoa_c_r [': [l_t' 4,I)]lCF('.

i. 'I'!:+." v:dtl,_ ,>t" Yd (the altitude .diff.:_vciicc )),.dv,'.",.:_ I_ {;'.,,.J b,Mies) is

al)pro-d_)_:!.te_i5 t.h(e _:cl;l(: ea(;h pa,_s. The t'(:;t>,)i_ iJ)' {tli'; it-; f}_,_! [h,.? :_Jti|l!dc;
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P_wtul'});_.[i :>_l.g 'Lt/ U. Fgl!III('IIL Of perigee ,tt;,._ to ".,_,5.c .f-:2,.:c.<sf...._,_ ,..:,,:'-- ,.:._.rth' s oblate-

_<:s._; :_i-c_ i.,.,(> _Jl.]i4l_t Io catu>;(? si_,:nificanL Ctl:kno,'5.,r,- ip. 3t,' _TF.,)n: ('no p_J.ss to .mother.

2. 't'h(; _!7r<'cti()t ,, in which the dcbr:i:_ S:ttx:t!ii.t: i:_ l.i':tv(:lii/_{ a.S it passes

thium;.£}_, ',he gars_j,l [;i:mc cemains al)proximato]y Lh,:- :;_Lm< lvc)m f)_t:-Js:t_re to

IDLI.SS{L_{_ (_, 'F}ie :'g;LII!C FoLIson given iOF iLcm 1 .ql.'-ov._ _,__5 > ai:)_,ti(s h(_c since, for

_). p.:ivc:: :tng[(' bciwctm lhe re>bit planes, the dicect:i,:m _,r t-.,u,:vel is :,. fro:eLlen of

the sa_.c!litc' ._ f_Sght path angle and the !_ight F.-_I}_ :tr_:'._]..:-,in:' n__ i>:t_r,,:i{eie ks a

f_,mc!i(m of a ,'go n_c.nt of p(:,,'igc(_o

;1. The distance between successive l)ass,.?s. A<'-,, is :t const:_'d-_t bccanse,

:t._; -'.(alcd cut ,-iiel'.. tb.i:-; study is restriete,-I ,:o cgcevi:.'- ,;:_l)jtc. of t}'c {:_:.rgct

sLIte[1.:ilc. Th,._ p'.,..th Sl)t_ed o1" the target saieliiU_. :i;-_eir,::cda.r oirbits i_ 3. ten,tar, t;

thtls_ t}_c: net (:i_:)-.mt'e in its; position ,.]urillg otlc' orl)-t',:3 ?_<,l'7<)d of 11_(-,},,I,,.,7_

O!).}(?C{ Will I'(}ill{tiI] ('(_Fx,_glLi.l-i't.
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4. The path of the debris satellite is almost a straight line in the

vicinity of the target p_ane where collision is possible (at least a distance
2R from the target plane).

Assuming that the debris satellite' s R A and R remain constant, theP

value of Yd depends upon the orientation of the major axis of the debris satel-

lite' s elliptical orbit with respect to the line of intersection; i. e., Yd depends

upon the "true anomaly" of the line of intersection as measured in the debris

satellite orbit plane (Fig. 5). Most orientations, as represented by the

dashed line in Figure 5, will cause Yd to be of such a value that it would be

impossible for the trajectory of the debris satellite to pass through the target
sphere. However, when the intersection line occurs within some interval of

true anomaly, A_?, approximately the position of equal altitudes (the shaded

area), a non-zero collision probability exists and can be calculated in the

following manner. As shown in Figure 6, there will be a certain interval (d)

along a line parallel to the relative x axis, such that if the trajectory of the

debris object intersects the target orbit plane within this interval, the trajectory

will pass through the target sphere. The exact value of d is dependent upon the

value of Yd and the three-dimensional direction that the debris satellite is

traveling. The derivation of d is given in Appendix B.

Once this collision distance (d) has been calculated, the probability

of collision can be calculated in the following manner. In Figure 6, the

successive debris passes through the target orbit plane are shown occurring

at particular positions along the relative x axis. The exact positioning of

these passes is actually unknown and is therefore considered to be completely

random. That is, the debris satellite passes can be shifted any amount up to
a distance of AS (after which any subsequent shift produces positions which

are a repeat of a previous position), and each of these positions is equally
probable to occur.

To gain insight into how the probability of collision can be calculated

from this, consider the following example. Assume that the interval AS is

divided into six equal segments of length Ax (Fig. 7) and that there are a

large number of cases (say 1000) of a debris satellite passing through the

target plane in any random position within AS. This quality of randomness

dictates that the same number of passages are possible in each Ax interval,

because passage through any segment of AS is equally probable with passage

through any other segment of equal length. In Figure 7, Ax= AS/6. Let

m be the number of cases which can occur in the interval Ax out of the total

number of cases, n, which occur within AS. Then

n

m 6 (1)

8
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Equation (1) is for ;l ::\.\ c_qual to (1/6) AS. For any size Ax

I1

m AS/Ax (2)

and

in Ax

n AS
(3)

A fundamental definition of probability is as follows: If there are n mutually

exclusive, exhaustive, and equally likely eases, and m of these tire favorable

to an event A, then the probability of A is m/n. Since equation (3) holds for

any Ax, it holds when Ax- d. By the abo_e, dcfh_ition, the probability that

the debris sat.cllitc will pass within the interval d is

_ m d (4)
Plap n AS

Since the debris satellite has a single chance, to pass through the interval d

each time the dehri:_ and target satellites lap each other, Plap is the proba-
bility per lap.

/

6 5

Figure 7. Geometrical explanation of collision probability expression.

11



Equatio'l (4) was developed for a given mutual orbi_ plane orientation,

(the assumption was made that inclinations, arguments of perigee, and node

separation angles were known). The quantity, d, and therefore Plap' is a

function of these quantities. The perturbation rates (because of the earth' s

oblateness) of node separation and argument of perigee are glreat enough so

that it is impractical to maintain up-to-date measurements on these quantities.

Therefore, for a given time (at which it is desired to compute a collision

probability), it is assumed that node separation Afl and argument of perigee

co are unknown and that all values of these angles between 0 deg and 360 deg

are equally probable. Rewriting equation (4) as functions of these variables

yields

d( ,aU)
Plap AS (5)

For each value of Afl , only a very restricted range of values of w will yield

a non-zero value for d; hence, for most values of co, Plap = 0. The average

collision probability per lap over node separation and argument of perigee is

27r 27r

--Plap - 4zr"yl 0f 0f Plap dw d(Aft ) (61

An attempt was made to perform the double integration in equation (6)

analytically. Since this attempt was not successful because of the complexity

of the probability expression, the expression was numerically integrated by

the trapezoidal method on a digital computer. Numerically integrating equa-

tion (6) over both variables required an excessive amount of computer time
because these calculations must be made for each debris satellite in earth

orbit (about 2400 presently). This problem was circumvented (losing very

little accuracy) by noting, after several numerically integrated runs, that

the plot of probability as a function of argument of perigee, co, manifests

itself as four humps which resemble half ellipses (Fig. 8). The reason for

the four humps is made clearer by referring to Figure 5. Varying the argu-

ment of perigee, co, from 0 deg to 360 deg has the effect of varying _, the

orientation of the line of intersection between the two orbit planes relative

to the position of the debris satellite perigee. The sum of co and

is the argument of latitude (measured in the debris orbit plane) which

remains constant for a given All. The shaded areas in Figure 5 are the

range of intersection line positions where a non-zero collision probability

exists. Each of these orientation ranges occurs twice when _ (or co ) is
varied from 0 deg to 360 deg when

12



3

\

4---

t--

O

fJ_

t-

O

¢...)

<3

c_

I

I

I

I

E

,_!l!qDqoJd u0=S!ll00

0

re)

0
OD

3

0

C)
(.E)

\

C)
- (:x:)

,,it-.-

0

}

;>

%
%
0

3

m
>

r_
©
%

%

e_

%-i

m

_A _

o _

I!

13



3

0
u

a_

3

3

0

o
o

o

o o

0 bl_
%

_ m

_ "_

.._ a N

_ m

%
,.., m

"o

o
r/1

4_

N

g
• °r-I

3

14



1. 77is between_?qand_?r

and

2. _?is between180+ _q and 180+ Hr.

If the integral of this function (Fig. 8) is approximated as the area of
two ellipses, then only the probability as a function of nodeseparation need
be numerically integrated. The method of determining the dimensions of
the humps for the area calculations is described in Appendix C. A mathe-
matical justification for the use of this ellipse approximation is given in
Appendix D.

A few very special cases (debris orbits) produce a probability versus
curve having a shapesimilar to the one in Figure 9 and must be numeri-

cally integrated. The elliptically shapedhumps becomedistorted so that the
area _nder oneof the humps can no longer be approximated as the area of a
half ellipse. These types of curves are generatedwhen either the apogeeor
perigee of a debris satellite orbit is very near (within a few diameters of
the target sphere) to the altitude of the target satellite. The humps are
actually connectedas in Figure 9-b whenthe altitude of apogeeor perigee
falls within the radius of the target sphere. Cases like these for which the
elliptical approximation does not hold are numerically integrated over argu-
ment of perigee. Very little additional computer time is required since only
a few (usually less than 10) cases like these are encountered for any given
target satellite altitude. -

The probability that the debris satellite (the jth satellite) will collide
with the target satellite at least once within anyduration mission (Pm) can

be calculated oncethe probability for eachlap in the mission, [Plap (equation
6)] is knownby using the following equation:

P : 1 -(1 -_Plap)Lm ' (7)
J

where

L = the total number of laps that occur between the target satellite
and the debris satellite.

The probability that the target satellite will collide with any one of the debris
satellites is

15



where

k

PTOT = i - (1 - P )m.

j=i J

k = the total number of debris satellites in earth orbit.

Equations (7) and (8) are derived in Appendices E and F, respectively.

SAMPLE PROBLEM

The problem of collision with debris satellites takes on special

significance for the proposed modular Space Station because the expected

mission duration of 10 yr and the large Space Station dimensions provide

much greater exposure. An analysis of the collision hazard of the Space

Station is included to illustrate tile _-_ of the computational technique and to

provide additional insight into the collision problem.

The launch and operation of the modular Space Station are still some

years away. The satellite population in existence at the time the mission is

in progress will obviously determine the collision probability, ttowever, future

satellite populations are difficult to predict since the satellite launch rate

depends on economic, political, and military factors. Therefore, an arbi-

trary launch date and a static satellite population were assumed. The satel-

lite sample used in this analysis was the population and distribution in exis-

tence as of September 1970. This satellite sample contains only objects

which are tracked by NORAD. The sample contains 1805 objects, but a

collision is possible only with those objects which cross the Space Station' s
altitude.

RESULTS

The total collision probability was calculated for a range of Space

Station altitudes from 200 km (108 n. mi. ) to 1400 km (756 n. mi. ) consider-

ing the entire satellite population. The results are shown in Figure 10. In

generating these results, the Space Station inclination was held constant at 55

deg and the mission duration was assumed to be 10 yr.

16
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Fhe Space Station was represented as a sphere with a radius of

50 m. Although the actu_ size and configuration of the Space Station had

not been finalized at the time of this study, the assumption was made, based

on current design proposals, that a miss distance of 50 m from the center

of the Space Station would represent either a collision or a very near miss.

Therefore, the results in Fignrc 10 can be interpreted to be the probability

that a debris satellite will intrude within a 100-m-dinm sphere at least once

during a 10-yr mission. A more detailed plot of the stone data is given in

Figure 11. In this figure the nmnber of debris objects which cross the vari-

ous altitudes is plotted. The general trend of the collision probability is

to increase as the number of satellites increases. Fig_lre 12 is a plot of

collision probability versus Space Station inclination. The altitude of the

Space Station was held constant at 500 km (270 n. mi. ).

The collision probabilities presented in Fig_lrcs 10, 11, and 12

must be regarded as minimtun values, since there is considerable debris in

earth orbit which is not trackable by NORAD due t(_ the small size or the

low reflectivity of the object.

A parameter study was performed to d(;te rmine the types of debris

orbits (size and shape) which contribute a large part to the total probability.

Figure 13 shows the effect of varying perigee for constant apogee altitudes

and Figure 14 is the result of varying apogee for constant perigee altitudes.

The inclination of each debris orbit was held constant at 0 dog. The collision

probabilities in these figures are not total probabilities but are individual

satellite probabilities. These curves show that the largest contributions to

the total collision probability are made by debris whose orbits are nearly

circular and near the Space Station altitude. In other words, the closer the

apogee or the perigee approaches the Space Station altitude, the higher the

probability that a collision will occur (neglecting the effect of inclination).

Figure 15 shows an expanded view of the peak of one of the curves

of Figure 13. The collision probability reaches a peak and diminishes to

zero as the satellite perigee passes through the altitude bm_d of the sphere.

The same trend is also present in Fig,_re 14 as alxogcc passes through the

altitude band of the sphere.

Encountering some near-circular debris orbits at the various

Space Station altitudes is the cause of the scattered effect in the data of

Figures 10 m_d 11. The "spikes" in the data of Figure 12 at certain Space

Station inclinations art; caused by the possibility (for some nodM orien-

tations) for the Space Station to be coplaner with the debris satellite but

rotating in the opposite direction. This situation manifests itself in equation

(4) as an tmusually large value for d.

18
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I
Space Station Altitude : 500kin

Space Station Inclination : 55deg J
10 Miss Distance : 50 m !

Mission Duration : 10 yr
Debris Satellite Inclinations : Odeg j

I /Apogee
I O-; Attitudes

._ 0 km___._..____ _ _

" o_3. /
1 See Figure 1,5

0

>, 0-41

o 800kin

I 6 5- 4000 krn
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Figure 13. Probability of collision with individual debris objects

as a function of perigee altitude of the debris orbit.
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Figure 14. Probability of collision with individual debris objects

as a function of apogee altitude of the debris orbit.
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The effect of the out-of-plane angle, 5, on the collision probability is

illustrated in figures 16 and 17 for a few typical debris orbits. These curves

show that the collision probability is greatest when the debris orbit is coplaner

with the target orbit. As 5 approaches zero degree a somewhat abrupt increase

in collision probability occurs compared to a gradual increase as 5 approaches

180 deg (retrograde copl'mer orbits). The major reason for this trend is the
orientation of the relative velocity vector as a function of 5. In general, high

probabilities result when the relative velocity vector (,mid thus the trajectory

of the debris object) is almost parallel to the direction of travel of the target

satellite; that is, when its direction cosine is a m,'tximum. Since the inertial

velocities of the two objects are generally of the same order of magnitude, a

small change in 6 from zero degree immediately causes the relative velocity

vector (roughly V--d - Vt) to assume a large angle with the path of the target

vehicle. This acute angle gradually decreases as 5 varies to 180 deg (the

retrograde position) where the relative velocity vector is again nearly parallel

to the direction of travel of the target vehicle.

The collision probability was parameterized over miss distance

(Fig. 18) and mission duration (Fig. 19). These curves emphasize that

using large vehicles in earth orbital missions of long duration result in high

collision probabilities. In Figure 18, the linearity and slope of the logarith-

mic plot at lower probabilities (less than 0.5) show that the collision probabi-

ity is approximately proportional to the square of the miss distance. For

example, if the miss distance is doubled from 50 m to 100 m, the collision

probability is iner¢_ased approximately four times. This curve indicates

that it is ahnost a certainty that a trackable object will pass within 1/2 km

of the Space Station at least once during the 10-yr mission. Figure 19 shows

that the collision probability is linear with mission duration. The circled

point on FigTares 1_ and 19 represents the proposed Space Station mission.

CONCLUSIONS

If the present trend in satellite population growth continues, the colli-

sion hazard to men and equipment in earth orbit will become more and more

severe. It seems inevitable that eventually the development and utilization of

a collision avoid_me system will become mandatory. Indeed, collision

probabilities for the proposed modular Space Station of 0.01 to 0.04 (for the

altitudes being considered) may indicate an immediate need for such a system.

Some alternatives (or additions) to the above remedy are (1) stricter controls
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on the amount of debris placed in orbit from a single launch, (2) the reser-

vation of certain altitudes for manned vehicles or other satellites requiring

collision protection, and (3) restrictions on the rate of launching objects

into earth orbits (nationally and internationally).
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APPENDIX A

DERIVATION OF RELATIVE VELOCITY COMPONENTSX, Y, Z
AND ORIENTATION ANGLESOF DEBRIS PATH o AND

Suppose the origin of a nonrotating right-handed system of axes is

placed at the center of the earth and is defined to be an inertial reference

frame. The origin of the relative coordinate system (Fig. 2) moves at a

velocity (with respect to the inertial frame) equal to the velocity of the target

sphere (V t) . The immediate objective is to transform the inertial velocity

vector of the debris satellite into the moving coordinate system.

The x-axis of the relative coordinate system was specified in the text

as being a curvilinear axis along the path of the target vehicle. To simplify

the vector transformation, the curvilinear system can be replaced by a rec-

tangular Cartesian coordinate system where the y and z axes remain the same

but the x_axis is tangent to the path of the target satellite. This allows the

use of the standard transformation between two rectangular Cartesian coor-

dinate systems, one fixed and one moving. Very little accuracy is sacrificed

by doing this since computations of the relative velocity components are

required only in the vicinity where a collision is possible, that is, near the

origin (within the interval - --d -< x -< _d) of the relative coordinate
Z z

system. Under this constraint, the difference between the Cartesian system

and the curvilinear system is negligible.

By using the standard transformation between the two coordinate

systems, the velocity of the debris satellite in the inertial system can be
written as

(A-l)

where

V = the velocity of the debris object in the relative coordinate system.
r

p = the position vector of the debris object in the relative coordinate system.

_t = the rate of rotation of the relative axes with respect to the inertial system.

The required vector is V . Solving equation (A-l) for this vector yields
r
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(A-2)

Writing this equation in matrix form in terms of the three-dimensional com-
ponents of each term results in

k
k d

_d

_t

Yt

_t
I Px

x py

Pz

(A-3)

Figure A-1 shows the orientation of the inertial velocity vector of the debris

object in terms of the flight path angle, 3' , and the angle between the debris

and target orbit planes, 6 (6 is derived in Appendix G). Resolving this
vector into its components in the directions of the relative coordinate axes
yields

Xd = -V d cos 3' cos 5

Yd = Vd sin

Zd = Vd cos 3, sin 6

(A-4)

Since _ remains along the x-axis of the relative coordinate system,

its three components are

_K _- -V
t t

_t = 0

= 0
t

(A-5)

Because of the way the relative coordinate system was defined (p. 4 -

second paragraph) it undergoes rotation about the z-axis only. Therefore,

co = 0
X

cO = 0
Y

L0 ----CO
Z

(A-6)
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The rotational rate :ot is computedas
27

a_- T
t

where

Tt= the orbital period of the target satellite.

The relative velocity componentsof the debris satellite are computed
only whenthe debris satellite passes through the orbit pIane of the target
satellite. Therefore, the last matrix in equation (A-3) becomes

PX = x d

Py= Yd

(A-7)

PZ = 0

Substituting (a-4), (A-5), (A-6), and (A-7) into (A-3) yields

-V d cos_/ cos 5

V d sin 3/

V d cos 7 sin 5

-V t

0 I10 1 Xd

0 I x Yd

I 01
_°t]

(A-8)

Carrying out the matrix operations yields the relative velocity components

:k = V t - V d cos7 cos 5 + co t Yd (A-9)

= V d sin 3/ -wt Xd

= V d cos 3/ sin 5

The product V d cos-/ in the _k and z equations can be replaced by

C1/R d, where

C l= R d V d cos 7 ,

is the angular momentum associated with the orbit of the debris satellite. Also

can be written as a function of the true anon__tly of the planar intersection
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line by noting that _ is approximately equal to R d" Therefore,

d d ( p ) ep sin_Y= d--'t- (Rd) = d"-_- 1+ e cost} = (1+ e cosrT) 2

Multiplying the right side of equation (A-10) by Rd2/Rd 2

= Rd2C 1 _ ,

and noting that

equation (A-10) changes to

C_ pe s!:
Y= (1+ e cos )ZRdZ

Since

p2
R 2 =

d (1 + e cost}) z

equation (A-11) reduces to

7= Cl--_e sin _)
P

Since

C12
p-

t_

= ___e_esin _7
Ct

(A_11)

(A-12)

(A-13)

The relative velocity components are finally written as

:k = v _ __t cos6 +
t R d WtYd

z= C1 sin5

R d

(A-14)
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Referring to Figure A-2, the debris path orientation angles are

0= tan-l(_) (A-15)

and

fl= tan-1 (_)

Comparing equations (A-15) with equations (A-9), it is found that

fi= f(Xd) (A-16)

The technique used to calculate the collision distance (Appendix B) dictates

that fl remain constant as x d varies. Therefore, the _ x d term in equations

(A-9) (the _ equation) is considered to be zero since its value will always be

small (less than 1 m/s).
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APPENDIX B

DERIVATION OF THE COLLISION DISTANCE, d

As stated in the text, the only varying quantity associated with succes-

sive passes of the debris satellite through the orbit plane of the target satel-

lite is the horizontal position of the intersection point. Figure 6 shows

several of these successive passes. This figure shows that if the debris

satellite passes through the target orbit plane within a distance of d/2 from

the y axis, then the debris object will intersect the sphere, thus defining a
collision. The distance d is a function of the three-dimensional direction of

travel of the debris object and the altitude difference at plane intersection, Yd"

In order to determine d, the equation of the target sphere is first

solved simultaneously with the equations of the line of travel of the debris

object. This yields the coordinates of the points at which the debris path

intersects the sphere. The position of the debris intersection with the x, y

plane (Xd, yd) is then varied in the x direction to generate the range of values

of x d which produces real (mathematically) intersection points with the target

sphere. The altitude difference Yd is maintained constant as are the fl and 0

angles defining the direction of travel. This range of values of x d is equal to

d. The derivation follows:

The equation of the sphere which represents the target satellite is

x 2+ y2+ z2= R 2, (B-l)

where R is the miss distance (or sphere radius). The equations which specify

the debris satellite trajectory, assuming that it travels in a straight line and

has the same direction as the relative velocity vector in the relative coordinate
system, are

y= (X-Xd) tanfl+ Yd (B-2)

z= (X-Xd) tan0 • (B-3)
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The pa._cametersxd and Ydare the x and y coordinates, respectively, of the
point vchere the debris satellite passes through the orbit plane of the Iarget
satell"Lte. Figure 6 shows this geometrically. To find the intersection points
of the, debris trajectory with the target sphere, equations (B-2) and (B-3)
are s_ubstitutedinto equations(B-I) andthe terms are collected on x2 andx,
yield,ing

ai x2+ blx+ c1= 0 (B-Z i)

wh,ere

a1= 1 + tan2/3 + tan20

b i = 2y d tan/3 - 2x d ( tan2fi + tan20)

(B -5)

c 1 = x2d tan2fl - 2xdY d tan fi + yd 2 + Xd2 tan20 - R 2

Solving equation (B-4) for x, the x-coordinates of the points where the li .ne

of travel cuts the sphere are obtained:

x = b-A- _ _ b12 - 4ate1 (B-6)
2a_ 2a 1

The y and z coordinates are given by equations (B-2) and (B-3).

In equation (B-6) above, if bl 2 = 4alc l, the debris trajectory is tan-

gent to the sphere; if bl 2 > 4alcl, it intersects the sphere at two poin' ts; if

bt 2 < 4alcl, no intersection occurs. It is required to find the range of values

of x d which satisfy the inequality

bl 2 > 4atc 1
(B-.7)

Substituting equations (B-5) into equation (B-7) and collecting te rms on Xd2

and x d yields

2 > (B-8)
a2x d + b2x d + c 2 - 0 ,
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where

t2 = -4( tan2_ + tan20) (B-9)

b 2 = 8y d tan fl

c 2 = 4[(R 2 - yd 2) sec20 + R 2 tan2f_]

_I 'he so lution of the above inequality is

x dXdl _ Xd2 , ( B- 1 0)

whe :re

_ -bz+
Xd1 2a 2 2a 2

and

-b2 _ _ b22 _ 4a2c 2
Xd2 2a_ 2a_

The col lision distance, then, is

b22 _ 4a2c 2
{i '= Xd2 - Xdl a2 (B-11)

This is th .e interval along the x-axis through which the debris object can pass
and inters ect the sphere.
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APPENDIX C

AREA DETERMINATION OF PROBAB ILITY VERSUScoHUMP.

To determine the dimei sions of the humps in Figure 8, it is noted

that the maximum probability (for each Aft increment) as a function of w

occurs when the altitudes of the two bodies are equal at the line of intersection

between the orbit planes. When this occurs the value of Yd goes to zero and

the cap that is cut off the sphere in Figure 7, becomes a hemisphere

causing the collision distance d to reach a maximum. The true anomaly of

the intersection line (measured from the line of perigee in the debris orbit)

at which Rd = Rt is calculated as

 os-, ]'m x. : L eRr " (C-1)

The sum of the true anomaly, _, and the argm:aent of perigee, co, is the

argument of latitude, u. Thus,

CO = Umax. - rlmax.

Substitutingthe above value of co into the probability expression
max.

[ equation (5) in the text] yields the maximum collision probability as

max. _ ,
1TIaX o

AS

(C-2)

(c_3)

where

P = the height of the probability hump of Figure 8.
max.

To obtain the width of the hump, A co, it is required to find the values

of co where the probability goes to zero. The probability expression is set
equal to zero yielding

Plap = d/AS = 0
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or

d=0 (C-5)

From Appendix B,

d= - _b22- 4a2c2
a2

(C-6)

Therefore to satisfy equation (C-5)

b22 - 4a2c 2 = 0 _ (C-7)

where

a 2 = -4 ( tan2fi + tan20) ( C -8)

b2= 8Ydtanfi

c2= 4[(R 2 - yd2} 3ec20 + R 2 tan_]

Substituting equations (A-15) and (C-8) into (C-7) and solving for the

altitude difference_ Yd' yields

ydi = + R and Yc_ -R _2 (C-9)

where _, and _ are derived in Appendix A. The quantities ydl and Yd2 are the

altitude differences between the two bodies where the collision probability
goes to zero. These two values are then used to calculate the orbital radius

of the debris satellite (at the line of intersection between the orbit planes)
at which the collision probability goes to zero as

Rdl,2 = Rt + Ydl,2 " (C-10)

The position (true anomaly) in the orbit of the debris satellite where this
radius occurs is

Tll,2 = c°s-11P- Rdl,2] , (C-11)

[eRdj ,2 J
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where

p= the semilatus rectum

e = the eccentricity.

The arguments of perigee corresponding to_l and rl2 are expressed as

wl,2: u -71,2 , (C-12)

where

u = the argument of latitude (in the debris orbit) of the intersection
line.

The difference between co 1 and co 2 is the width of the probability versus co

hump. Thus,

a_ : _2-_,: (u -_2) - (u -,_)

or

Aco is typically less than . 5 deg for a miss distance of 50 m. The area of

the probability versus co hump is then approximated as one-half of an ellipse

with the minor axis equM to Aco and the major axis equM to 2 P
max. °

(Appendix D for justification). The approximate area of one hump is

A= ¼ 7r P Aco (C-14)
max.
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APPENDIX D

MATHEMATICAL JUSTIFICAT ION FOR
ELLIPTICAL APPROXIMATION OF INTEGRAL

Figure D-1 shows the target sphere and the two positions at which

the debris path can be tangent to the sphere. These two tangent points lie

on a small circle of the sphere. An edgewise view of this circle is shown

in Figure D-2 as seen by an observer looking down the x-axis in the +x direc-

tion. The plane of this circle is always perpendicular to the y_z plane since

Yd' 0, and fi remain constant for successive passes of the debris satellite

through the target orbit plane and the only variable is xd. In figure D-2, the
radius of the small circle is r and

r2 : R2 - (Yd cos_)2 (D-l)

Since

then

COS OL --

Equation (D-l) can then be written

r2=R 2 (-_-_-_)- yd 2 (D-2)

From Figure D-l, d can be related to r in terms of the relative velo-

city components by taking the dot product of V and {-, a unit vector in the
r

x-direction, as follows:

V _= V cos E = _ (D-3)$

r r

Therefore

COS £- (D-4)
V

r
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Yd

Y

Plane of Debris Satellite

Passes

Z

Target Sphere

To Earth

Figure D-2. Edgewise view of the small circle in the target sphere

defined by passage of the debris object through the target sphere.
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Squaring equation (D-4) and substituting it into the trigonometric identity

sin 2 _= 1 - cos 2 (D-5)

yields

sin 2 _= 1 -_-2
r

_z + }'e+ _'e (D-6)

From FiglJre D-1

2r
sin c - (D_7_

d

Squaring equation (D-7), substituting equation (D-6), and solving for d 2
results in

d2= 4r2 [:K2+ Y 2+ _2 ]},z + _z (D-S)

Substituting (D-2) into [D-8) gives

= _ yd 2
(D-9)

Carrying out the multiplication yields

d2: 4R2
(}z + _2)_ Yd 2

and upon rearranging,

d2+ •

( },2 + _2) 2
Yd 2 - _:;' + _z

(D-10)
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Both sides of equation (D-10) are divided by the right side to give

d2 Yd 2

4R21 yZ+ zZ ; R2 YZ+ zZ'--Tu--

(D-I1)

Since

d

Plap - AS '

then

d 2 2 AS 2
= Plap

(D-12)

Substituting (D-12) into (D-11) yields

Plap 2 Yd2

=1 (D-13)

The altitude difference, Yd' can be expressed as a linear function of

(the true anomaly at which the intersection line occurs) by writing the

expression for Yd as a Taylor series. The expression for Yd is

P _ R
Yd= f0]) = 1+ e cos_ t (D -14)

The Taylor series of f(T}) expanded about the point _o is

f"( o )
f(_/)=f('r/o)+ f'O1 o) (77 -r/o)+ 01 -T} o) + -..

2!
(D-15)

Substituting (D-14) into (D-15) and neglecting higher order terms (for small

A_? ' s) yields

= [ P _ Rt]_ [P(1-e sin_?o) ]A _ , (D-16)
Yd 1+ ecOS_o (1+ e cOS_o) Z

where

A_ =
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This linear function is a close approximation to the actual function if /M/ is

sufficiently small. A typical value for A T is less than . 5 deg.

Letting the constants in equation (D-16) be

P
a = - R

1 + e cos _1 t
O

(D-17)

and

-P(1 - e sin_/o )
b =

(1 + e cOS_o)2
(D-18)

equation (D-16) then becomes

yd = a+ bAT/

If _ is chosen such that a= 0 [ equation (D-17)] , then
o

Yd = b AT? .

Substituting equation (D_20) into equation (D-13) yields

(D-19)

(D-20)

p 2

lap Aarj 2
4R z j_2+ _z+ _z + R _ _+ _ = 1 (D-21)

This equation shows that the probability of collision versus _1 curve is ellipti-

cally shaped under the assumptions that (a) the velocity components of the

debris satellite remain constant over the width (AT) of the ellipse, and (b)

the interval AV, for which a non-zero probability exists, is sufficiently small

to insure that Yd is a linear function of 7?. These assumptions are not true only

when the debris satellite radius of perigee is within several target sphere

radii, R, of the radius of the target satellites orbital radius.
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APPENDIX E

EXTENSIONOF PROBABILITY PER LAP EXPRESSION
TO PROBABILITY FORTHE ENTIREMISSION

Let Plap be the probability, for each lap, that a debris satellite will

collide with the target satellite. The probability, then, that a collision will

not occur during the first lap of the mission is 1-Pla p. The theorem of

compound probability states that if A and B are any two independent events,
then

p(AB) = p(A) p(B) (E-I)

Stating equation (E-l) informally, the probability that both A and B happen is

the probability that A happens times the probability that B then happens. Now

associating A with the probability of noncollision for the first lap and asso-

ciating B with the probability of noncollision for the second lap, the probability

of noncollision for both laps is

n

Pnc : (1 - Plapl ) (1 -Plap2 )

or

p = (1__ I )2 (E-2)nc ap '

since the probabilities of noncollision are equal for both laps (Plapl
The probability of noncollision for L laps is then

Since

-- L

Pnc = (1 - Plap) (E-3)

Pcollision + Pnoncollision 1 , (E-4)

then the probability of collision with the jth satellite for a mission duration

consisting of L laps is

-- L

Pm. = ( 1 - Plap. ) (E-5)
J J
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APPENDIX F

COLLISION PROBABILITY BETWEEN THE TARGET SATELLITE
AND ANY ONE OF THE TOTAL NUMBER OF DEBRIS SATELLITES

Let P be the probability of collision between the target satellite and
m.

]

the jth debris satellite for the total mission. The objective is to derive an

expression for the probability that a collision will occur with any debris object

considering the entire debris population. The principle of compound probability
as explained in Appendix E applies in this case also. The difference here is

that the individual satellite probabilities, P , will not be equal in general.
m.

]

Thus, the total collision probability is written as

n d

PTOT : i - _ (1- P )
m.

j:l j

where

n d : the total number of debris satellites in earth orbit.
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APPENDIX G

DETERMINAT ION OF THE ANGLE BETWEENTWO ORB IT PLANES

Figure G-1 shows the projections of two orbit paths onto a spherical

earth. The orbits represented by these projections are inclined to the equa-

torial plane by amounts id and i t. The angle between the planes, 5, can be

found in terms of the known quantities, id, it, and A_ by considering the

oblique spherical triangle ABC. The relations between the sides and angles of

this triangle are completely specified by Napiefs analogies. The equations

are as follows:

sin ½ (i' - id)t _ tan½(cr -

sin _ (i_ + id) tan ½ (A_t)

x) (c-i)

"I

cos -_ (1 t - id) = tan ½(or + X)
.?

cos ½(1 t + id) tan ½(Aft)
(G-2)

.!

sin ½(cr - k) = tan ½(1 t - id)

sin½(¢+ x) cot½6
(G-3)

1

cos ½((r - X) tan _(i' + id)= t
cos½(_ +x) cos_6

(G-4)
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Equations (G-l), (G-2), and (G-4) are sufficient to find i5. First,

solve equations (G-l) and (G-2) for (or-X) and ((r+X) respectively, to
2 2

obt ail 1

' , ]((r-X) _ tan-1 in½ (it _ id) csc ½(i t + id) tarl½Al2 (G-5)
2

and

+2x) -' [ cos½(i} - id) see _ (i_ + i(l )

tan ½ A_2 ] . (G-6)

SubstilLuting equations (G-5) and (G-6) into (G-4) to elimin ate the unknown

quanti_ties and then solving for 5 yields

5 = 2cot -1 [tan ½(i_ + id)costan -1 (j)sectan -1 (k)l , (G-7)

where

j = cos }(i_ - id) sec ½(i_ + id) tan ½A

and

Noting :from Figure G-1 that i' = 7r -t
(G-7) results in

k = sin ½ (if - i d) cse ½(if + id) tan ½ A_-I .

it, and substD :uting this into equation

6 = 2 cot -1 Icot ½(i t - i d) costan -1 (j") seetan -1 (k')] , (G-8)

where

sin ½ (i t + id) csc ½(i t - id) tan _ A i2

and

k' = cos ½(i t + id) see ½(i t - id) t:_n ½ A_2
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